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Following Golebiewska-Lasota and Edelen, a gauge structure existing in the 
field of the stress and the stress function is demonstrated, on the basis of an 
electromagnetic analogy given elsewhere. The four-tensors and four-vectors are 
used to state the set of fundamental equations, and the gauge condition and the 
gauge transformations are given in a similar way to electromagnetic theory. 

1. I N T R O D U C T I O N  

Golebiewska-Lasota  (1979) demonstrated the gauge transformation 
structure underlying in the dynamics of  dislocations in solids. The theory 
was extended by Golebiewska-Lasota and Edelen (1979) to the problem of  
defects including disclinations, and other authors (Kunin and Kunin, 1986; 
Kr6ner,  1986; Edelen and Lagoudas,  1987; Kadi6 and Edelen, 1983) to the 
general gauge theory of  defects of  the Yang-Mills  type. 

By starting with the fact that the relation between stress and stress 
functions is similar to the one between incompatibili ty and strains, the 
geometrical theory of  stress functions was developed and extended to the 
theory of  non-Riemannian stress-function space, where the stress and couple 
stress are referred to the curvature and torsion tensors, respectively 
(Schaefer, 1953; Minagawa, 1962, 1968). This corresponds to the geometrical 
theory of  defects by non-Riemannian geometry, where we use the strain 
space having the incompatibili ty and dislocation density as those 
geometrical terms. 

It has been shown that we have a principle of  duality between those 
spaces so that the expression including those geometrical terms is converted 
into another  one, having a certain physical meaning, by the substitution of 
those terms for their corresponding ones in the original. For example,  the 
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formula for the force exerted on dislocations by external stresses has the 
structure 

(the curvature tensor of the stress-function space) 
x (the torsion tensor of the strain space) 

This is converted into 

(the curvature tensor of  the strain space) 
x (the torsion tensor of  the stress-function space) 

which has the meaning of  the force exerted on the incompatibility by the 
external couple stresses (Minagawa, 1970). 

As has been mentioned, the gauge transformation structure underlies 
the defect dynamics. The gauge theory of  Golebiewska-Lasota and Edelen 
is in the framework of  the theory of  strain space; it is converted into the 
framework of  the theory of  stress-function space. The aim of  this paper is 
to advance a first step in this direction. 

2. BASIC EQUATIONS 

We assume an orthogonal Cartesian coordinate system with respect to 
which the position of  a material point is xi. Throughout  this paper, lower 
case Roman indices i , j ,  k , . . .  take values 1, 2, or 3, and Einstein's summation 
convention is used for those indices appearing twice in one expression. A 
superposed dot means a derivative with regard to the time t. 

We have the following set of  basic equations (Minagawa, 1971): 

(a) Equations of  continuity of dislocations: 

c3jaji = R i  (1)  

(b) Equations of  balance of dislocations: 

�9 p Oaji 
a m f l  .i  e~mn = + Rguj (2) 

Ot 

(c) Equations relating the stress and stress functions: 

ejm~ 0toXin -- 0~0 § O'~ (3) 
Ot 

(d) Subsidiary conditions for the stress functions: 

a j ~  v = pw~ (4) 

where eUk is Eddington's epsilon, a 0 the dislocation-density tensor, R~ the 
density of  dislocation sources, tip the plastic distortion tensor, E U and ~u  
the stress functions, o- U the stress tensor, u; the velocity of dislocation source, 
w~ the velocity of  displacement, and p the mass density. 
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As given in Minagawa (1971), equations (1)-(4) have the same form 
as the Maxwell equations in electromagnetic theory, and therefore the terms 
of dislocations and stresses are compared with the terms of electricity and 
magnetism. Based on this analogy, we shall state the basic equations of 
dislocations and stresses in terms of the four-tensors and four-vectors to 
lead to the gauge conditions and gauge transformations which correspond 
to those in the electromagnetic theory. 

3. F O U R - T E N S O R  REPRESENTATIONS 

We introduce the system of space-time coordinates (x, ict), where i 
equals ~ and c is a parameter having the dimension of the velocity. The 
upper case Roman indices/ ,  J, K , . . .  take values 1, 2, 3, 4, and Einstein's 
summation convention is used also for those indices. The index 4 corre- 
sponds to the time coordinate. 

By assuming the four-tensor and four-vector such that 

H ~ :  

i ~ 
/O Ol3p --O~2p c ] ~ l p  

i .,o 
-c~3p 0 ~lp -/32p 

C 

i .p 
a2p - a l p  0 -/33. s 

. . . .  /33p 0 
s C 

(5) 

and 

[~ i i Reu3 Re] NP: Rpu, c Rpu2 c (6) 

We can write equations (1) and (2) 

OH~j § OH~ 
- N~ 

OX K OX I OXj 
(7) 

where (/, J, K, L) is one of the even permutations of (1, 2, 3, 4). 
On the other hand, if we put 

0 Ep3 --•p2 icXttpl ] 
-~p3 0 ~pl icxtrp2 ] 

k-icqrpl --icXttp2 --icXldp3 

(8) 
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and 

M~: [%10rp20"p3 iCpWp] (9) 

we can combine equations (3) and (4) into 

oGPs 
- M {  (10) 

oxs 

for I =  1, 2, 3, or 4. If  J = 4 ,  we have equation (3), and if J =  1, 2, or 3, 
equation (4) is given. 

4. GAUGE CONDITIONS 

Since GPj is antisymmetric with respect to J and K, 

aM p a2GjP K 
. . . .  0 (11) 
OXs Oxj Oxr 

is identically given. The last equation leads to 

O;o-vs = p~i,p (12) 

which is the equation of motion of the materials. 
Corresponding to the Lorentz gauge condition in the theory of elec- 

trodynamics, we introduce the condition 
p p 

OGPK t -OGK! + OGIJ = 0 (13) 
Ox~ Oxs OxK 

By taking (1, 2, 3) as (I, J, K) ,  we can reduce the last equation to 

0Ep, = 0 (14) 
OXn 

and (4, 2, 3), etc., 

10Epj  = 0 (15) 
8jmn Om~ttpn C 2 0 t  

The last two equations imply the subsidiary conditions which are imposed 
on the stress functions. We have used those subsidiary conditions in the 
conaputation of the stress field produced by moving dislocations. 

5. GAUGE TRANSFORMATIONS 

If we substitute 

~pj= XItpj + Bvj (16) 
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equation (4) is reduced to 

p w  e = ojC~ ~j - o j B ~ j  (17) 

Thus, the new variable ~ o  satisfies equation (4) if and only ifOjBpj vanishes; 
i.e., we have 

B.j = - e j , . .  Ombp. (18) 

where bp,, is a tensor function of the space and time coordinates. 
Next, we substitute 

f;.p. : Zp.  + Ap.  (19) 

in equation (3) to obtain 

o'p~ = ej,.. O,.Zp. + ' i r p j - e j m .  O . , ( A p . - b p n  ) (20) 

The invariance of the stress field is guaranteed by the vanishing of the last 
term of the right-hand side of equation (20), so that we have 

a p .  - Dp. : o.ap (21) 

where ap is a vector function of the space and time coordinates. 
Thus we arrive at the gauge transformations 

Zp.  o ~p.  = Zp.  + O.ap + Dp. 
(22) 

�9 pj ~ ~pj  = ~pj  - sj,.. O,.bp. 

which map equations (3) and (4) into themselves and leave the M~j field 
invariant. 

In space-time terminology, the transformation (22) is stated as follows: 

- 0 ~ ,  
O f j  -~ G 5  = G•  + r s ,  F~j = icezjKc - -  (23) 

OXL 

where SU, KL is Levi-Civita symbol and (b~ are given by 

i 
dpf = bpi, dPP4 = - ap (24) 

c 

which corresponds to the four-potential in the electromagnetic theory. 
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